
1Trellix ATR Industrial Control System Simulation

Executive Summary
The industrial revolution began between the 18th and the 19th century and
never stopped growing. Its goal was to reduce costs by replacing humans
with machines and trading factories for industrial processes.

Nowadays, we are surrounded by technology, from our simple desktop
or smartphone to complex processes such as energy controls or nuclear
power plants. These critical assets are extremely sensitive because they
represent the pillars of the economies of our countries. They provide the
comfort and safety of people, as well as money for industry.

Industrial control systems (ICS) are at the heart of our factories; they are
essentially a way of interacting between the digital and physical worlds,
crossing the border between data and physical actions. For a decade,
industrialthreats have continued to be more violent and more impactful.
This began in 2008 with Stuxnet, the first known industrial malware to
manipulate the monitored data of a nuclear power plant. Since then, there
have been many other threats, such as Industroyer in 2016, which targeted
a power plant in Ukraine and eventually took down the electricity supply
for more than 200,000 people and Triton, the first industrial malware
targeting a safety system used to protect human lives in 2017.

Due to the complexity of industrial systems and their high cost, information
on either is not easily available. To target such systems, attackers must
invest time, people and money.

Most of the time, industrial attacks can have a political and economic
impact; they can also be used to discredit governments and manipulate
public opinion. Such attacks create critical situations that represent major
threats. For us, as defenders, it is our role to inform and educate our
audience to the industrial risks we are facing.

Last year, Paul Rascagneres and Patrick DeSantis from Talos published a
great article about an ICS platform they released. Inspired by this effort,
McAfee Advanced Threat Research forked and adapted this platform to
create a similar project. This blog will outline the project goals and show
how to build your own ICS simulation. We will also explain some of the
challenges the industrial field might face, including the Modbus protocol,
one of the most used industrial protocols, and present some use cases.

Trellix ATR Industrial
Control System Simulation

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/triton-malware-spearheads-latest-generation-of-attacks-on-industrial-systems/
https://blog.talosintelligence.com/2019/02/oil-pumpjack.html
https://blog.talosintelligence.com/2019/02/oil-pumpjack.html

2Trellix ATR Industrial Control System Simulation

How Does the Modbus
Protocol Work?
According to Wikipedia, “Modbus is a serial communications protocol
originally published by Modicon (now Schneider Electric) in 1979 for use
with its programmable logic controllers (PLCs). Modbus has become a
standard communication protocol and is now a commonly available means
of connecting industrial electronic devices”.

It allows for the monitoring of industrial processes and devices such as
valves, engines and thermometers, among many others, and works by
following the client/server model.

Industrial processes are usually connected to a supervisory control
and data acquisition (SCADA) system which allows data visualization. To
communicate with TCP/IP, the reserved port 502 for Modbus has been
assigned.

To store data, Modbus uses the following tables within the protocol
implementation:

Tables Access Object Size

Coil Read-write 1 bit

Discrete input Read-only 1 bit

Input register Read-only 16 bits

Holding register Read-write 16 bits

The coil and discrete inputs store 1-bit values (a Boolean value that is
either on or off) and the registers store numerical 16-bit values. For each
type of data there is one read/write and one read-only table. There are
no tables for the 32-bit data size due to the legacy design of Modbus,
however it can be stored by combining 2 registers.

Coil and Discrete Inputs can store one bit of data as this is a Boolean value
– it is either on or off.

Registers can store an integer, meaning they can be used to store more
complex data such as temperature, pressure or speed for example.

Modbus uses numerical function codes that tell the PLC whether to
read or write to a specific table. Each function code relates to a specific
data table address range. An extract of some function codes has been
provided in the table on the next page:

https://en.wikipedia.org/wiki/Modbus

3Trellix ATR Industrial Control System Simulation

Function Code Action Description

Read Coils 0x01 Used to read from 1 to 2000 contiguous statuses of coils in a remote
device

Read Discrete Input 0x02 Used to read from 1 to 2000 contiguous statuses of discrete inputs in a
remote device

Read Holding
Registers

0x03 Used to read the contents of a contiguous block of holding registers in a
remote device

Read Input Registers 0x04 Used to read from 1 to 125 contiguous input registers in a remote device

Write Single Coils 0x05 Used to write a single output to either ON or OFF in a remote device

Write Single Register 0x06 Used to write a single holding register in a remote device

Read Exception
Status

0x07 Used to read the contents of eight exception status outputs in a remote
device

Diagnostics 0x08 Provides a series of tests for checking the communication system
between a client device and a server, or for checking various internal
error conditions within a server

Write Multiple Coils 0x0F Used to force each coil in a sequence of coils to either ON or OFF in a
remote device

Write Multiple
Registers

0x10 Used to write a block of contiguous registers (1 to 123 registers) in a
remote device

Read/Write Multiple
Registers

0x17 Performs a combination of one read operation and one write operation
in a single MODBUSs transaction where the write operation is performed
before the read

Read Device
Information

0x2B/0x0E Allows reading the identification and additional information relative to the
physical and functional description of a remote device only

As Modbus is a protocol that does not define exactly how the data should
be stored in the registers, different vendors can use different ways to
store and transmit it in the registers transmitting, for example, the higher
bits first then the lower bits.

Importantly, the device that receives the data must know the order to
receive and read the data.

With that brief overview of the Modbus protocol we can move forward to
the next section to build our own industrial system simulation.

Project Overview
The goal of this project is to provide a functional industrial model that can
simulate process monitoring based on the Modbus protocol. We 3D-printed
a Beam engine and connected it to an Arduino that will be the PLC. The

4Trellix ATR Industrial Control System Simulation

system is connected through the internet to a Human Machine Interface
(HMI) that monitors the engine and some other indicators such as LEDs,
temperature and a siren. An on-board OLED screen shows the speed of
the engine.

The following diagram illustrates the connection between the components:

The complete setup looks like this:

The project is 3D-printed with this model (https://www.thingiverse.com/
thing:1350988).

Hardware Details
To build this platform we used the following components:

 � Arduino Mega: the core module that uses Modbus (https://store.
arduino.cc/mega-2560-r3)

https://www.thingiverse.com/thing:1350988
https://www.thingiverse.com/thing:1350988
https://store.arduino.cc/mega-2560-r3/
https://store.arduino.cc/mega-2560-r3/

5Trellix ATR Industrial Control System Simulation

 � Ethernet shield: for TCP/IP connection and monitoring (https://www.
arduino.cc/en/Main/ArduinoEthernetShieldV1)

 � Motor Shield: to control the motors (https://www.velleman.eu/
products/view/?id=412538)

 � An OLED screen: to shows the speed of the engine (https://
www.amazon.com/Diymall-Yellow-Arduino-Display-Raspberry/dp/
B00O2LLT30)

 � LEDs: to monitor the status (green if OK, red if something wrong)

 � A buzzer: for the siren

 � A steam generator: to simulate overheating (https://www.graupner.
com/Super-steam-generator-6-V/2324/)

The Arduino and the ethernet shield are powered via a USB port. The
VM03 shield is powered externally by a 12-volt adapter.

The following diagram shows the interconnection between each
component:

NB: in the above diagram the DC motor generates electricity that can
perturbate the ethernet connection. To mitigate that we added 3
capacitors directly connected to the DC motor.

Software Details
The code on the Arduino is based on an implementation of the Modbus
library (https://github.com/luizcantoni/mudbus) and supports Modbus over
TCP. The data monitored with Modbus in this model includes:

 � Device Information: it can be retrieved with the function code 0x2b
(43).

https://www.arduino.cc/en/Main/ArduinoEthernetShieldV1
https://www.arduino.cc/en/Main/ArduinoEthernetShieldV1
https://www.velleman.eu/products/view/?id=412538
https://www.velleman.eu/products/view/?id=412538
https://www.amazon.com/Diymall-Yellow-Arduino-Display-Raspberry/dp/B00O2LLT30
https://www.amazon.com/Diymall-Yellow-Arduino-Display-Raspberry/dp/B00O2LLT30
https://www.amazon.com/Diymall-Yellow-Arduino-Display-Raspberry/dp/B00O2LLT30
https://www.graupner.com/Super-steam-generator-6-V/2324/
https://www.graupner.com/Super-steam-generator-6-V/2324/
https://github.com/luizcantoni/mudbus

6Trellix ATR Industrial Control System Simulation

 � Speed Engine: this is the speed of the motor. This data is stored in
register 6.

 � Gauge value: this is the speed represented as a percentage. This data
is stored in register 7.

 � Temperature: this is an arbitrary value generated with the motor
speed value. The quicker the motor runs, the higher the temperature
is. This data is stored in register 10.

 � LED status: there are currently 2 LEDs, a green one to indicate that everything
is working great and a red one to indicate that something is going wrong. The
green LED status is stored in coil 0, the red LED in coil 1.

Human Machine Interface (HMI)
The HMI is coded with Flask and Pymodbus. It monitors the Beam Engine
and shows the data in a graphical way. It gets the device information as
well as the value of the registers. It is also possible to increase or decrease
the speed of the engine. The LEDs are also monitored; if something goes
wrong, the red LED starts to blink.

Below is a screenshot of the HMI.

Overall Demo
To present the full demonstration of the Beam Engine we created a video
that shows it in action: https://youtu.be/vqlCuM_lg3E.

https://youtu.be/vqlCuM_lg3E

7Trellix ATR Industrial Control System Simulation

Use Cases
Network Dissection and Attack

To understand how a protocol works it can be useful to sniff the traffic
between the HMI and the PLC. Interestingly, Modbus is a clear text protocol
without any authentication.

The TCP frame is composed with the following fields:

Transaction Identifier Synchronizing communication

Protocol Identifier 0 for Modbus TCP

Length Length of the packet

Unit Identifier Identifier of the slave

Function Code Function to execute

It is then possible to understand the protocol with Wireshark. In the below
screenshot we requested that the PLC give us the information about the
device with the function code 0x2B (43):

Response from the PLC:

8Trellix ATR Industrial Control System Simulation

Here we can retrieve the following information:

 � VendorName: McAfee PLC

 � ProductCode: Beam Engine

 � MajorMinorRevision: 1.0

It is also possible to retrieve information about the register with the
function code 0x03 (Read Holding Register):

In this part we can see information about these registers:

 � Register 6: Speed value

 � Register 7: Gauge value

 � Register 8: Temperature

It is also possible to retrieve the content from the coils with the function
code 0x01 (Read Coils)

9Trellix ATR Industrial Control System Simulation

Here we have coil number 0 that stores the value “True,” corresponding to
the green LED and coil number 1 that stores the value “False”.

If we increase the speed of the engine through the HMI, we send the
function code 0x06 (Write Single Register) and we send the data 0x2af8
(11000) which corresponds to the speed value of the engine.

Basic Modbus Attack
Now that we know a little more about how Modbus works, we can try to
perform a basic attack. As Modbus is an unauthenticated protocol it is
possible to connect to it to modify the data.

With Pymodbus it is possible to interact directly with the PLC. We wrote a
simple tool that can grab information about the PLC such as:

 � Device info

 � Register values

 � Coil values

It is also possible to insert data to modify the speed engine with the option
“-w”.

Visit Trellix.com to learn more.

About Trellix

Trellix is a global company redefining the future of cybersecurity. The company’s open and native extended detection and response (XDR)
platform helps organizations confronted by today’s most advanced threats gain confidence in the protection and resilience of their operations.
Trellix’s security experts, along with an extensive partner ecosystem, accelerate technology innovation through machine learning and
automation to empower over 40,000 business and government customers.

Copyright © 2022 Musarubra US LLC 042022-01

A Metasploit module that allows the connection and the modification of
the PLC via Modbus also exists. It can be found here: https://github.com/
rapid7/metasploitframework/blob/master/modules/auxiliary/scanner/
scada/modbusclient.rb.

With such a scenario, we could make a man-in-the-middle attack that
could manipulate the data and show fake data to the SCADA interface.

Conclusion
Threats that target industrial devices are highly critical because they
have an impact on the physical world. Many industrial systems are poorly
protected or inadvertently connected to the Internet or even unmonitored,
assuming security due to network segmentation. To appreciate the risk of
connected industrial systems, it is crucial to understand how such devices
work and the risks we are facing so we can adapt the protection.

Most of these devices are expensive and not always accessible to the
practitioners. This 3D-printed ICS model is a quick and inexpensive way
to demonstrate and practice on a simulated ICS network. We show in
this blog how easy it is to manipulate Modbus packets to interfere with
a PLC. You can easily improve this model by adding your own values and
configuration.

Similar attacks can be and have been reproduced on real PLCs and SCADA
systems, making it imperative that industrial systems have critical security
measures in place.

References
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

https://blog.talosintelligence.com/2019/02/oil-pumpjack.html

https://www.trellix.com/en-us/index.html
https://github.com/rapid7/metasploitframework/blob/master/modules/auxiliary/scanner/scada/modbusclient.rb
https://github.com/rapid7/metasploitframework/blob/master/modules/auxiliary/scanner/scada/modbusclient.rb
https://github.com/rapid7/metasploitframework/blob/master/modules/auxiliary/scanner/scada/modbusclient.rb
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://blog.talosintelligence.com/2019/02/oil-pumpjack.html

