
1Bypass SSL Pinning on Android

Bypass SSL Pinning
on Android
The McAfee Advanced Threat Research team conducts security research
with the aim of staying ahead of the evolving threat landscape to expose
and reduce attack surfaces. This series of white papers discusses
laboratory security research techniques that are generally known among
the professional community of security researchers. The white papers
are provided to elevate collaboration and security within the industry
and are not to be used for unlawful purposes. Security researchers are
responsible for lawfully obtaining equipment and for complying with
contracts and licenses for their research.

An increasingly common technique used by mobile application
developers to prevent reverse engineering of their internal APIs is to
implement SSL pinning. SSL pinning is the process of only accepting
a select number of SSL certificates as valid during mobile application
network transactions.

A common way to understand how an application talks to either a web
service or product is to install a selfsigned SSL root certificate. This is
possible in both Android and IOS. The idea here is to capture the network
traffic while the device uses the self-signed root SSL certificate for all
network transfers. Since you know the private key of the self-signed
SSL certificate you can then decrypt the SSL network packets from the
network capture and inspect what is being sent from your device.

When SSL pinning is in affect you will notice that as soon as you install the
self-signed certificate and force the device to use it, you will no longer be
able to use the target application. Commonly, you will not be able to get
past the login page of the application. If you look at the network capture
from a device that has SSL pinning enabled, you will notice that there is
no traffic at all. This is because the SSL certificate check happens before
any network transactions take place.

There are 3 common ways that Android applications will pin SSL
certificates. The first is TrustManager within the Android API from the
“java.net.ssl.TrustManager” class. The second is to use the OkHttp library
which includes a “CertificatePinner” function. The third is to use the
Network Security Configuration to issue a pinned certificate; this only
works on Android 7 and above. You can read more about these methods
here: https://www.netguru.com/codestories/3-ways-how-to-implement-
certificate-pinning-on-android

2Bypass SSL Pinning on Android

The easiest way to check if an application you are analyzing is using SSL
pinning is to try to capture some traffic with a self-signed certificate.
You can either use Burp Suite https://portswigger.net/burp or an Android
application like “Packet Capture” https://play.google.com/store/apps/
details?id=app.greyshirts.sslcapture. If you get data in either of these
methods, then congratulations, the application you are analyzing is not
pinning a certificate. If you do not see any traffic, or the application will
not log you in, then continue reading.

The first step is to root your phone or use a phone
already rooted. Be aware that the process of rooting
your own phone will delete all your data, including
your local storage (e.g. photos). I am not going to
explain how to root your phone here as there are
many tutorials online, e.g. https://www.androidcentral.
com/root.

The next few steps will take place on a computer
and not the Android device. You will probably need
to have the Android SDK platform tools (ADB and
Fastboot) on your machine to root your mobile
device and they can be found at https://developer.
android.com/studio#downloads.

You will also need to set up Burp Suite for the network capture and SSL
decrypting. A great tutorial can be found at https://support.portswigger.
net/customer/portal/articles/1841101-configuring-an-android-device-
to-workwith-burp and, if you need help installing the Burp Suite SSL
Certificate on an Android device, you can follow the instructions found
at https://support.portswigger.net/customer/portal/articles/1841102-
Mobile%20Setup_Android%20Device%20-%20Installing%20CA%20
Certificate.html.

At this point you should have set up the Android device with root
and installed our custom SSL certificate. You will also have set up the
software on the computer to be used as a proxy for the Android phone,
allowing us to capture all the network traffic from the device. Our next
step will be to install and run Frida on the Android device and hook the
system calls that are enforcing the SSL pinning to take place.

Figure 1. SSL Pinning enabled

3Bypass SSL Pinning on Android

You can download Frida from GitHub
here: https://github.com/frida/frida/
releases, ensuring you select the
correct Frida-server binary for your
Android device and the correct
Frida-core for your computer. If you
have a newer Android device it is
probably amd64, but you should
always double check.

Once you have the Frida-server
binary downloaded you will need to
move it onto the Android device in a
folder with executable permissions,
which requires root. Please make
sure you have “USB debugging”
enabled on the Android device or
ADB will not be able to connect.

1. Push the frida-server file to the Android device

 a. adb push /path/to/frida-server /data/local/tmp

2. Push the Burp Suite SSL certificate to the device

 a. adb push /path/to/burpca-cert-der.crt /data/local/tmp/cert-der.crt

3. Now we will need to make the server executable

 a. adb shell “chmod 755 /data/local/tmp/frida-server”

4. With the frida-server and certificate in place we need to execute it.

 a. adb shell # this will log you into the Linux underneath Android.

5. Once you have a shell switch to the root user of the device.

 a. su # this will prompt you on the phone to accept the command to
 use root, say yes

6. Lastly, we will move to the correct folder and execute frida-server

 a. cd /data/local/tmp

 b. ./frida-server

4Bypass SSL Pinning on Android

With the Android device running the Frida-server, and all network traffic
passing through the Burp Suite proxy, we will need to execute the Frida
universal SSL unpinning script from the computer.

frida –U –f <full name of Android application> --codeshare pcipolloni/
universal-android-ssl-pinningbypass-with-frida --no-pause

-U – Tells Frida to use the Android connected over USB debugging.

-f – Application to spawn on the device

--codeshare – Will pull down the script from Frida’s codeshare
repository (https://codeshare.frida.re/).

--no-pause – Will automatically start the main thread after startup

At this point, if everything worked correctly, you should be able to login
to the application, bypassing its SSL pinning requirement. You should also
start to see traffic in Burp Suite with the packets decrypted.

If you are still not able to login to the application, and you have verified
that you have followed the above steps correctly, the application may
be using a Root checker and denying your rooted device from even
attempting an SSL connection. As it is known that SSL pinning can be
bypassed with a rooted device some Android application developers will
include a root checking library that can find SU binaries or other artifacts
of root applications on your device and deny access.

The best way to check if your target Android application is checking
your phone for root is to decompile the application and look for libraries
and strings. One library that I have run into before is Scottyab’s Rootbeer
library https://github.com/scottyab/rootbeer. The way you can bypass
these types of checks is to use something like a root cloaker (Magisk
system-less root has this built-in) but the problem with them is that Frida
cannot find the SU binary either, so it fails.

Visit Trellix.com to learn more.

About Trellix

Trellix is a global company redefining the future of cybersecurity. The company’s open and native extended detection and response (XDR)
platform helps organizations confronted by today’s most advanced threats gain confidence in the protection and resilience of their operations.
Trellix’s security experts, along with an extensive partner ecosystem, accelerate technology innovation through machine learning and
automation to empower over 40,000 business and government customers.

Copyright © 2022 Musarubra US LLC 042022-01

The steps needed to bypass a root checker are:

1. Disassemble the target application using apktool https://ibotpeaches.
github.io/Apktool/

 a. apktool d target.apk -o output_folder

2. Now you will have the smali code of the Android application. Search
the folder for a common root application.

 a. grep “chainfire” output_folder

3. Open all the smali files that include static strings that indicate root
applications.

4. Change all the static strings that could find your root application to
another string like “foo”

5. Now that we have modified the smali code we will have to recompile it
into an APK.

 a. apktool b output_folder

6. There will now be an apk in output_folder/dist/

7. If you try to install this apk now on your device, it will fail since it is
not signed. We can sign it with a new certificate, it won’t match the
original, but Android won’t mind.

8. Use Dex2Jar https://github.com/pxb1988/dex2jar to sign the apk

 a. d2j-apk-sign.sh unsigned.apk

9. Now that the apk is signed you should be able to install it on the
Android device. Make sure the original one is uninstalled first.

If you successfully remove all the root checking strings and rerun the
Frida script you should be able to unpin the SSL certificate correctly and
have access to the network traffic of the target application.

