
1Cross Compiling for Prehistoric Systems

Cross Compiling for
Prehistoric Systems
By Mark Bereza

Rationale

When you find an embedded device perfectly preserved in
metaphorical cyber amber, do you donate it to the nearest museum or
try to hack it? If the device is practically prehistoric—perhaps created
by the Plateosauri whose stubby arms couldn’t reach the F5 and F10

keys and never bothered to ship the system with GDB—what do you do?

Discovering Features About Your Relic

Figure 1. First users of Linux Kernel 2.6.30, pictured above.

Figure 2. Fossil records suggest this tool was a favorite of Neanderthal
hackers. An elegant weapon, for a less civilized age.

2Cross Compiling for Prehistoric Systems

In order to correctly configure our toolchain for the device, you will
need to do some research/reconnaissance to determine its various
features, including:

 � processor name/model

 � presence of an FPU

 � instruction set architecture

 � ABI (if applicable)

 � Linux kernel version

 � libc type and version

 � GCC version

This guide will use an ARMv5 embedded system running Linux kernel
version 2.6.30 as an example target. While a comprehensive guide for
discovery of each of these features for whatever embedded device you
found in King Tut’s tomb is outside the scope of this page, the following
general strategies might prove useful:

1. Discovery of the device name, model, and manufacturer should come
first. You should be particularly interested in the processor on the
device. Often this can be found by simply inspecting the device for
any labels or branding. If the device has an FCCID, search for this ID on
the FCC ID Database. Try Googling any values found via barcodes or
QR codes.

2. If you’re able to find out the name of the device or its processor,
look up the datasheet for the device. These can often be found on
the manufacturer’s website. Datasheets can help us find out what
hardware is running on the device and can often tell us the instruction
set architecture and whether or not the device supports hardware
floating point.

3. The other information requires access to the device’s filesystem or at
least a binary you know runs on the device. If you have access to the
filesystem, perform string searches for key words using grep:

grep -rn ‘/root/of/unpacked/filesystem’ -e ‘keyword’

I. If uname -a doesn’t work, you might be able to find information
about the Linux distribution/version under /etc/ in a file containing
the word “version,” “release,” or “issue.”

II. Processor information can often be found under /proc/. Check
to see if the /proc/ directory contains a file named ‘version”; if it
exists, if often contains useful information.

III. The libc type and version can be found by seeing what /lib/

https://en.wikipedia.org/wiki/Application_binary_interface
https://www.fcc.gov/oet/ea/fccid

3Cross Compiling for Prehistoric Systems

libc.so.X symlinks to. As an example, the /lib/ directory on the
aforementioned ARMv5 device contains libuClibc-0.9.30.so,
which indicates that it’s using uClibc version 0.9.30. Other common
C libraries include glibc, eglibc, and musl.

IV. Performing a string search for “gcc” on /lib/libgcc_s.so.X will
often help you find not only the GCC version used to build the
binaries and filesystem, but will also give you information about the
toolchain that was used. Going back to our example device, we
found the following string in /lib/libgcc_s.so.1:
/here/workdir/factory/build_armv5l-timesys-linux-
uclibcgnueabi/gcc-4.3.3/gcc-4.3.3/libgcc/../gcc/config/arm/
lib1funcs.asm
This tells us that the device is running ARMv5l, that the Timesys
factory was used to generate the toolchain, the GCC version is
4.3.3, the ABI is EABI, and the libc is uClibc.

4. If you have access to a binary that you know runs on the device (ex:
downloaded firmware), you can discover information about the device
using readelf.

I. To find the name of the architecture, run:
readelf -h /path/to/binary | grep -i “Machine:”

II. To find the endianess, run:
readelf -h /path/to/binary | grep -i “Data:”

III. To find the ABI, run:
readelf -h /path/to/binary | grep -i “Flags:”

 or:

 readelf -A /path/to/binary | grep -i “Attribute Section:”

IV. To find the architecture version, run:
readelf -A /path/to/binary | grep -i “Tag_CPU_arch”

Setting Up Prehistoric Linux in a Virtual Machine

To hack the dinosaurs, you must first think like a dinosaur. Think to
yourself, “what OS would an ancient megalizard use?” Ubuntu 12.04 is the
answer. As an added benefit, Ubuntu 12.04 is also the latest version of
Ubuntu that supports Buildroot 2009.08, the latest version of Buildroot
that supports older kernels (> 2.6.X). If your system isn’t quite so ancient,
you might be able to get away with a newer version of Buildroot, but
for this guide, we’ll move forward with this version. First, install it onto
a virtual machine. Begin by obtaining an image of Ubuntu 12.04 here
(the image linked was reconstructed from fossil molds but should be
sufficiently accurate for our purposes).

https://linux.die.net/man/1/readelf
https://old-releases.ubuntu.com/releases/12.04.5/

4Cross Compiling for Prehistoric Systems

Once your VM is setup, be sure to run:

sudo apt-get update
sudo apt-get upgrade

It is crucial that we get the most cutting edge updates for this prehistoric
Ubuntu. Oh, and it’s also useful so that you obtain the certificates that
wget will look for when downloading packages for our toolchain.

Installing the Buildroot of my Father
and His Father Before Him

You can download Buildroot 2009.08 from here. In the spirit of historical
accuracy, the following instructions will use a technology appropriate
for that era, also known as CLI. The original meaning of the acronym has
been lost to time, but scholars speculate it might’ve stood for “Caveman
Language Interface.” Whatever the case may be, this nigh-hieroglyphic
text seems to get the job done:

wget http://buildroot.org/downloads/buildroot-2009.08.tar.gz
tar xzf buildroot-2009.08.tar.gz
rm -f buildroot-2009.08.tar.gz
cd buildroot-2009.08

Generating a Cross Compile Toolchain

Configuring Buildroot

To actually generate a cross compile toolchain for ARM, run the following:

sudo apt-get install automake bison flex gettext g++ libncurses-
dev texinfo
make menuconfig

Note: automake, bison, flex, gettext, g++, libncurses-dev, and
texinfo are all Buildroot dependencies.

If all goes well, you will now encounter what at first glance might appear
to be a graphic interface. DO NOT BE FOOLED. It is simply a hack meant to
make text with various background colors look like a GUI. From this menu,
you can customize the toolchain Buildroot will generate in various ways.
Which options you should select will depend on what you discovered
during the recon phase. For our example system, the following options
were selected (the rest left default):

5Cross Compiling for Prehistoric Systems

An explanation of the options selected:

 � From the recon conducted, we knew that the device was using an
Atmel AT91SAM9263, which is an arm926t chip.

 � Although we knew that the device is running Linux 2.6.30, we
intentionally selected the slightly older (didn’t even think that
was possible) 2.6.29.X version to be safe since kernel headers are
backwards compatible and we’re unsure about the minor version
number Buildroot will generate.

 � We want to make sure we enable thread library debugging, that way
we are able to debug multithreaded processes with the GDB we
generate.

 � Locale support ended up being a “gotcha” in this case since we
found that the libc generated without that option enabled would not
generate certain symbols needed by existing binaries on the device.

 � “Use Software Floating Point by Default” was selected since we know
the device does not have an FPU. If you’re not sure about the floating
point capabilities of your device, this is a safe bet.

 � We don’t want to build BusyBox because we don’t need it, but we do
want GDB, strace, and tcpdump for debugging purposes.

From here exit menuconfig and save your unholy configuration.

Target Architecture arm

Target Architecture Variant arm926t

Target ABI EABI

Target Options → Atmel Device Support Yes

Target Options → Atmel Device Support → Board Support for the Atmel AT91
Range of Microprocessors

Yes

Target Options → Atmel Device Support → Allow All ARM Targets No

Target Options → Atmel Device Support → AT91 Device Atmel AT91SAM9263 Microprocessor

Toolchain → Kernel Header Options Linux 2.6.29.X Kernel Headers

Toolchain → uClibc C Library Version uClibc 0.9.30

Toolchain → Thread Library Debugging Yes

Toolchain → Build GDB Debugger for the Target Yes

Toolchain → Enable Toolchain Locale/i18n Support? Yes

Toolchain → Use Software Floating Point by Default Yes

Package Selection for the Target → BusyBox No

Package Selection for the Target → strace Yes

Package Selection for the Target → Networking → tcpdump Yes

https://www.microchip.com/en-us/product/AT91SAM9263

6Cross Compiling for Prehistoric Systems

Downloading Dependencies

For antique versions of Buildroot, some of the repositories Buildroot will
try to download packages from will be dead. Thus, before you can run
make, you may need to manually download a few archives that Buildroot
needs but cannot download automatically since the mirrors it’s looking
for are now being used as fuel for cars. In our case, we needed to
download the following packages:

 � gdb-6.8.tar.bz2

 � zlib-1.2.3.tar.bz2

 � strace-4.5.18.tar.bz2

 � fakeroot_1.9.5.tar.gz

 � genext2fs-1.4.tar.gz

Inevitably the mirrors above will also disintegrate into dust, so depending
on how far into the future you’re reading this from, you might need to
find the files yourself. If the archive containing the files is named “fossils,”
that’s usually a good sign:

Cross Compiling for Prehistoric Systems Page 6 of 10

Inevitably the mirrors above will also disintegrate into dust, so depending on how far into the future you're
reading this from, you might need to find the files yourself. If the archive containing the files is named "fossils,"
that's usually a good sign:

Once downloaded, move all these files into Buildroot's download directory using:

mv -t /path/to/buildroot-2009.08/dl/ gdb-6.8.tar.bz2 \
 zlib-1.2.3.tar.bz2 \
 strace-4.5.18.tar.bz2 \
 fakeroot_1.9.5.tar.gz \
 genext2fs-1.4.tar.gz

Building the Toolchain

Now, run:

make

You might want to pull out your sundial at this point since this step will take anywhere between 3 and 7 moons
to complete.

If you've been following along with our example, you'll eventually encounter the following build error:

mkdir /home/buildroot/buildroot-2009.08/build_arm/makedevs-host
cp target/makedevs/makedevs.c /home/buildroot/buildroot-2009.08/build_arm/makedevs-host
/usr/bin/gcc -Wall -Werror -O2 /home/buildroot/buildroot-2009.08/build_arm/makedevs-
host/makedevs.c -o /home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs
/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs.c: In function ‘main’:
/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs.c:366:6: error: variable
‘ret’ set but not used [-Werror=unused-but-set-variable]
cc1: all warnings being treated as errors
make: *** [/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs] Error 1

It appears that our ancestors, in their ancient wisdom, decided that enabling -Werror was a great idea when
compiling a C file with unresolved warnings. But you're not afraid of a little historical revisionism, are you? From
the Buildroot root directory, open this file using:

vi build_arm/makedevs-host/makedevs.c

Once downloaded, move all these files into Buildroot’s download directory
using:

mv -t /path/to/buildroot-2009.08/dl/ gdb-6.8.tar.bz2 \
 zlib-1.2.3.tar.bz2 \
 strace-4.5.18.tar.bz2 \
 fakeroot_1.9.5.tar.gz \
 genext2fs-1.4.tar.gz

7Cross Compiling for Prehistoric Systems

Building the Toolchain

Now, run:

make

You might want to pull out your sundial at this point since this step will
take anywhere between 3 and 7 moons to complete.

If you’ve been following along with our example, you’ll eventually
encounter the following build error:

mkdir /home/buildroot/buildroot-2009.08/build_arm/makedevs-host
cp target/makedevs/makedevs.c /home/buildroot/buildroot-2009.08/build_arm/makedevs-host
/usr/bin/gcc -Wall -Werror -O2 /home/buildroot/buildroot-2009.08/build_arm/makedevs-
host/makedevs.c -o /home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs
/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs.c: In function ‘main’:
/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs.c:366:6: error: variable
‘ret’ set but not used [-Werror=unused-but-set-variable]
cc1: all warnings being treated as errors
make: *** [/home/buildroot/buildroot-2009.08/build_arm/makedevs-host/makedevs] Error 1

It appears that our ancestors, in their ancient wisdom, decided
that enabling -Werror was a great idea when compiling a C file with
unresolved warnings. But you’re not afraid of a little historical revisionism,
are you? From the Buildroot root directory, open this file using:

vi build_arm/makedevs-host/makedevs.c

Note: it is critical that you use vi to edit the file to get the full
Neanderthal experience.

Find the return 0; statement at the end of main() (located on line 534)
and change it to return ret;. Save your changes and run:

make

This time, the build should stop with the following output:

makedevs: line 41: regular file ‘/home/buildroot/buildroot-
2009.08/project_build_arm/uclibc/root/bin/busybox’ does not exist: No such file or directory
-rw-rw-r-- 1 buildroot buildroot 6979584 Oct 19 15:55 /home/buildroot/buildroot-
2009.08/binaries/uclibc/rootfs.arm.ext2
rm -f /home/buildroot/buildroot-2009.08/project_build_arm/uclibc/.fakeroot*

In the tongue of the dinosaurs, a file not found error followed by a rm -f
command translates to “the build was successful.” Just take our word for
it. Binaries for your target can be found in /path/to/buildroot-2009.08/
project_build_arm/uclibc/root/usr/bin/.

8Cross Compiling for Prehistoric Systems

Generating (Stone) Tools Using Make

If you want to build additional packages for your target after running
make the first time, you might be able to build it using make <name of
binary>. For example, running make strace from the buildroot-2009.08
directory will build strace.

Using the Cross Compile Toolchain
to Build Binaries from Source

If Buildroot cannot build the package you want automatically or if you
want to build the package statically, you will have to resort to the lost art
of manually configuring and building from source, the same way ancient
peoples would craft their own clothes out of the hide of the wild beasts
they slew.

Unfortunately, there is no universal strategy for accomplishing this as
different programs use different build methods. That being said, many
utilize the configure → make → make install workflow and there are
some common steps that will get you most of the way there. We will
illustrate this with an example. In particular, we will go through the
process of statically building GDB for our ARM system from source.

Naturally, you should replace all the “/path/to”s with the actual location
of these directories on your system.

These steps are common to the cross compiling process for many
programs. These include prepending the location of your cross compile
toolchain to your PATH, enabling static linking via --enable-static and --
disable-shared (configure step) and XFLAGS=-static (make step), and
setting the host to the prefix of your generated toolchain (--host=...).

wget http://ftp.lanet.lv/ftp/GNU/gdb/gdb-6.8.tar.bz2
tar xjf gdb-6.8.tar.bz2
rm -f gdb-6.8.tar.bz2
cd gdb-6.8
mkdir build-gdb
cd build-gdb
export PATH=$PATH:/path/to/buildroot-2009.08/build_arm/staging_dir/usr/bin/
export CFLAGS=-static
export CPPFLAGS=-static
export LDFLAGS=-static
../configure --enable-static --disable-shared --host=arm-linux-uclibcgnueabi
make

9Cross Compiling for Prehistoric Systems

Keep in mind that GDB and other tools have their own dependencies
and if your toolchain was not built with these dependencies this sort
of manual build will fail. For example, GDB requires the ncurses library,
which Buildroot does not build for the target by default. If you’re just
trying to build a static version of a package Buildroot supports, you can
simply select the package in Buildroot’s menuconfig and rerun make to build
all of its dependencies into the toolchain. If the tool you want isn’t on
Buildroot’s package list, you can try finding the dependencies manually
and search for them inside menuconfig using the “/” key.

On the other hand, if you just want to compile a simple C program you
wrote (named foo.c, for example), you would run the following:

export PATH=$PATH:/path/to/buildroot-2009.08/build_arm/staging_
dir/usr/bin/
arm-linux-gcc -Wall -g -o foo foo.c

Here, GCC flags were set in order to:

1. Enable debug symbols for GDB using -g. This is usually a good choice
since we’ll likely be testing and debugging whatever code we’ve
crafted for our target.

2. Enable all warnings using -Wall just to be safe.

How Can I Tell if this Caveman Voodoo Even Works?

While the most robust way to validate the binaries generated via cross
compiling is to simply run them on the target platform, you can also
perform a quick sanity check using the file command, like so:

file /path/to/binary

As an example, running file on the gdb binary created using the method
outlined in the previous section produces the following output:

gdb: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
statically linked, not stripped

This is a good sign since we were indeed targeting little endian ARM and
we wanted a statically linked binary.

To be even more thorough, you can run:

readelf -hdA /path/to/binary

https://linux.die.net/man/1/file

10Cross Compiling for Prehistoric Systems

This output confirms that the binary was built for ARMv5TE with the EABI
ABI and has no dynamic section (because it is statically linked).

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: ARM

Version: 0x1

Entry point address: 0x80d0

Start of program headers: 52 (bytes into file)

Start of section headers: 11315256 (bytes into file)

Flags: 0x4000002, has entry point, Version4 EABI

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 4

Size of section headers: 40 (bytes)

Number of section headers: 29

Section header string table index: 26

There is no dynamic section in this file.

Attribute Section: waeabi

File Attributes

Tag_CPU_name: “5T”

Tag_CPU_arch: v5TE

Tag_ARM_ISA_use: Yes

Tag_THUMB_ISA_use: Thumb-1

Tag_ABI_PCS_wchar_t: 4

Tag_ABI_FP_denormal: Needed

Tag_ABI_FP_exceptions: Needed

Tag_ABI_FP_number_model: IEEE 754

Tag_ABI_align_needed: 8-byte

Tag_ABI_align_preserved: 8-byte, except leaf SP

Tag_ABI_enum_size: int

which will print off the entire ELF header, the location of any required
shared libraries, and in-depth architecture information. Running this on
the same GDB binary produced the following output:

Visit Trellix.com to learn more.

About Trellix

Trellix is a global company redefining the future of cybersecurity. The company’s open and native extended detection and response (XDR)
platform helps organizations confronted by today’s most advanced threats gain confidence in the protection and resilience of their operations.
Trellix’s security experts, along with an extensive partner ecosystem, accelerate technology innovation through machine learning and
automation to empower over 40,000 business and government customers.

Copyright © 2022 Musarubra US LLC 042022-01

Conclusion

It’s difficult to anticipate what issues you’ll run into and the exact process
may vary substantially from device to device. As with many things in the
field of reverse engineering, persistence is key. Don’t be discouraged
if you encounter several build errors you don’t recognize when running
make, this is “normal.” The Buildroot mailing list is your friend and it’s likely
someone has already encountered your issue and documented the
solution there.

Additionally, make sure to allocate enough time to perform recon on
the device ahead of time. The better you understand all the various
software/hardware specs of your target, the easier it will be to build a
toolchain that will produce programs that actually run on the device. This
is especially important since you often won’t discover incompatibilities
until you actually run the program on the target and changing a single
toolchain setting often requires a full rebuild, making iterative approaches
extremely time-consuming.

Finally, although persistence is crucial, be careful not to go down
unneeded rabbit-holes. Focusing on the big picture - the problem you’re
actually trying to solve - can aid in this. Do you really need to build a
toolchain from scratch? Perhaps someone has already created one for
your device. Do you really need this exact version of GDB/strace/etc.?
If building a specific tool proves too challenging, try a different tool or
a different version. Do your binaries really need to be built statically?
Perhaps your device already has the needed libraries. If not, you may be
able to copy the ones in your toolchain environment onto the device to
make a dynamically linked executable work.

Best of luck, and happy hacking!

https://www.trellix.com/en-us/index.html
http://lists.busybox.net/pipermail/buildroot/

