
Mapping
win32k User to
Kernel tagWND
Data Structures
By: Eoin Carroll

22Title Lorem Ipsum

Win32k Vulnerability Research

When performing win32k vulnerability research and exploit analysis it is important to be able to map the user
and kernel tagWND data structure counterparts, but we are not aware f any automated way of doing this other
than manually setting breakpoints and using data structure contents to deduce the mapping. During the exploit
dissection of CVE-2021-1732, there was a generic requirement to track the state of the tagWND data structures
and locate the logic that operates on them for root cause analysis. We developed and now share a windbg
script to record the creation of tagWND data structures in the Windows kernel which are then mapped back to
their user mode counterparts to ease the vulnerability and exploit analysis process. This technique can be used
in general to aid in the research of win32k vulnerabilities.

CVE-2021-1732 Exploit Dissection

In February 2021, Dbappsecurity discovered a sample
in the wild that exploited a win32k escalation of
privilege (EoP) zero-day vulnerability (CVE-2021-
1732) on Windows 10 x64. The Advanced Threat
Research team performed a deep dive analysis of this
vulnerability, to identify the primitives for detection
and protection; you can find a full technical analysis
in this blog <insert link> . The exploit is novel in its
use of a new win32k arbitrary kernel memory read
primitive using the GetMenuBarInfo API (Application
Programming Interface) which, to the best of our
knowledge, had not been previously known publicly.

Win32k is the graphical component of the Windows
OS (Operating System), containing both user and
kernel mode components. When a window is created
in usermode using the CreateWindowEx API, a
corresponding tagWND data structure is created in
the kernel so the OS can manage the window. Per
figure 1 below, when HWValidateHandle is supplied
with a window handle it returns the address of the
tagWND data structure from the usermode desktop
heap. This is done for performance reasons as win32k
has both usermode and kernel components. Microsoft
have hardened this function from leaking kernel
addresses, but the offsets within the data structure
copied to usermode correspond to the kernel data
structure, and it is these relative offsets that allow
the exploit to control where it reads and writes to in
kernel memory.

Win32k vulnerabilities are generally turned into
a read/write kernel primitive by using a desktop
object known as a tagWND data structure created
by CreateWindowEx(). Once a vulnerability such as
a use-after-free (UAF) has been discovered within
the Windows kernel, the tagWND data structure is
typically used to create read and write primitives
within the kernel for a data-only attack. A data-only
attack requires only a read and write primitive as it
does not seek to execute malicious code in memory,
but manipulate data structures used by the operating
system to its advantage (e.g., steal privileged
process tokens for escalation of privileges). CVE-2021-
1732 is an out-of-bounds write vulnerability which can
be turned into an arbitrary read and write “data only
attack” by leveraging the tagWND data structure.

 Figure 1. Windows CreateWindowEx API and tagWND data structures relationship

https://ti.dbappsecurity.com.cn/blog/index.php/2021/02/10/windows-kernel-zero-day-exploit-is-used-by-bitter-apt-in-targeted-attack/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1732
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1732

33Title Lorem Ipsum

Data Structure Mapping Technique

Using the below windbg script we can now automate the mapping of the tagWND data structures from user
mode and kernel, the output of which can be seen in figure 2.

ba e 1 win32kfull!NtUserCreateWindowEx+0x6a 0 “r @$t2 = poi(@$teb+800+28); r @$t3 =
poi(rax+30); r @$t4 = $t2+$t3; .printf\”Kernel tagWND Address = %p || Kernel tagWND User
Copy Address = %p || tagWND Handle = %x || tagWND Desktop Heap Offset = %x || User tagWND
address = %p \\n\”, rax, poi(@rax+28), poi(@rax), $t3 , $t4;g”

The windbg script does the following (see figure 3):

1. Breaks on the return call from win32kfull!xxxCreateWindowEx to retrieve the kernel tagWND address

2. At offset 0x28h within the kernel tagWND address, there is a pointer to the kernel tagWND user copy
address. Microsoft have fragmented the kernel desktop heap and removed the kernel addresses from the
user copy tagWND data structure that is copied to the user mode desktop heap to prevent kernel address
leakage

3. Both kernel tagWND data structures we just located have a reference to the window handle (in this case
6064) and the offset within the desktop heap (1de90 in this case). Note the same desktop offset value is
used for locating the windows in both the user mode and kernel desktop heaps which allows one to read and
write memory using relative offsets without leaking their absolute address during the exploitation process

4. The Thread Environment Block (TEB) contains a pointer to the Win32ClientInfo data structure at offset
0x800h. The base address of the user mode desktop heap is then located at offset 0x28h within the
Win32ClientInfo data structure. By adding the tagWND desktop heap offset to the user mode desktop heap
base address we get the absolute address of the user mode tagWND (we are just emulating what happens
within the operating system when one calls user32.dll HMValidateHandle)

Figure 2. win32k User to Kernel tagWND data structure mapping using our windbg script

Figure 3. win32k tagWND data structure address and contents in Kernel and User mode

Copyright © 2022 Musarubra US LLC
APRIL 2022

4Function Hooking for Recon and Exploitation

The below script could also be used and would operate independent of any future changes to
win32kfull!NtUserCreateWindowEx+0x6a0, but it does generate some warnings in the output, so it is not as
clean of an option, but it does work.

ba e 1 win32kfull!xxxCreateWindowEx “gu; r @$t2 = poi(@$teb+800+28); r @$t3 = poi(rax+30);
r @$t4 = $t2+$t3; .printf\”Kernel tagWND Address = %p || Kernel tagWND User Copy Address
= %p || tagWND Handle = %x || tagWND Desktop Heap Offset = %x || User tagWND address = %p
\\n\”, rax, poi(@rax+28), poi(@rax), $t3 , $t4;g”

All testing was performed on Windows 10 version 1909.

Summary

When hunting for vulnerabilities or analyzing critical industry vulnerabilities you must use every known tool and
technique at your disposal so you can focus on achieving your research goals with the least path of resistance.
While analyzing CVE-2021-1732 I had to manually set breakpoints within the kernel and then visually compare
the data structure addresses to user mode which was a tedious process. Win32k is such a targeted component
for exploitation that automating this tagWND data structure mapping process adds the value of speeding up
future vulnerability hunting and critical industry vulnerability analysis.

