
Modifying
Third-Party
Android Apps
for Fun and
Profit
By: Mark Bereza

WHITE PAPER

2Modifying Third-Party Android Apps for Fun and Profit

Table of Contents

 03 Rationale

 04 Installing ADB on Dev Machine

 04 Enabling Developer Options + Debugging on an

Android Phone

 05	 Downloading	the	APK	to	be	Modified

 05 Unpacking the APK

 05 Dalvik, smali, and Other Made-Up Words

 06 Making Changes to the Code

 09 Repacking the APK

 09 Signing the APK

 09 Installing the APK via ADB

WHITE PAPER

3Modifying Third-Party Android Apps for Fun and Profit

Rationale

Anyone who’s taken at least one computer science course knows that all roads lead to Stack Overflow. In our
collective defense, it’s the natural conclusion of many good habits we try to instill in fledgling programmers: be
smart but lazy, don’t reinvent the wheel, and embrace modularity. Those of us who progress beyond introductory
CS	courses	quickly	learn	that	while	you’re	unlikely	to	find	exactly	what	you	need	ready	to	be	copied	from	some	
pure	soul	with	50,000	Reputation,	often	you	can	find	something	close	enough	–	quickly	transforming	a	“draw	
the rest of the ■■■■ing	owl”	problem	into	a	much	simpler	“fine-tuning”	problem.

Hackers, who often have fundamentally different goals than software engineers (kicking over sand castles vs.
building	them),	can	still	benefit	greatly	from	embracing	this	strategy	when	it	comes	to	exploitation	and	post-
exploitation.	

Similarly,	in	the	context	of	Android	exploitation,	it	can	often	be	much	easier	to	inject	code	into	an	app	that	is	
already	designed	to	authenticate	with	and	expose	the	functionality	of	a	cloud-based	service	than	it	would	be	
to	write	it	all	from	scratch	just	to	deliver	a	payload.

‘Easier’,	however,	is	a	relative	term	–	app	developers	have	this	nasty	habit	of	shipping	APKs	instead	of	their	
source	code	on	Google	Play,	and	binary	patching	an	APK	isn’t	exactly	a	walk	in	the	park,	either.	You	can	throw	
a Java decompiler at it, of which there are many, but the code it spits out won’t compile for any app more
complex	than	a	single	class.	What’s	a	hacker	to	do?

The answer is you’re gonna have to get your hands dirty and modify the APK at the bytecode level, allowing you
to surgically add (or subtract) functionality without the need to recompile the app. The remainder of this guide
will walk you through this process step by step, using my recent research on the temi Personal Robot as a case
study.	Before	we	get	to	the	recipe,	however,	it’s	important	to	first	collect	all	the	necessary	ingredients:

 � ADB	will	be	used	to	move	files	to/from	the	attacker’s	Android	device.

 � Apktool	(>=	2.4.1)	will	be	used	to	unpack/repack	the	APK.	NOTE: It is important that the Apktool used is at
least version 2.4.1. Older versions have a bug that causes it to not copy the META-INF/services directory,
resulting in unstable APKs.

 � JADX will be used to decompile the app’s bytecode.

 � keytool and jarsigner will be used to re-sign the altered app, and are included with the Java Development
Kit, or JDK.

After all, what is ROP if not the pinnacle of using someone else’s
code	for	your	own	needs?	

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/call-an-exorcist-my-robots-possessed/
https://developer.android.com/studio/command-line/adb
https://ibotpeaches.github.io/Apktool/
https://github.com/skylot/jadx
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://java.com/en/download/help/develop.html
https://java.com/en/download/help/develop.html
https://ctf101.org/binary-exploitation/return-oriented-programming/

WHITE PAPER

4Modifying Third-Party Android Apps for Fun and Profit

Installing ADB on Dev Machine

This process requires the use of the Android Debug
Bridge, or ADB. This can be obtained several ways:

1. Install Android Studio. Although Android Studio
does not include ADB by default, you can use it
to download the Android SDK, which does include
ADB. This might be the best option since you can
use Android Studio to debug your altered app.

 – From	the	Welcome	screen,	click	“Configure”	in	
the	bottom	right	(next	to	the	cog)	and	select	
“SDK	Manager”	from	the	drop-down	list.

 – From	there,	click	the	“SDK	Tools”	tab	and	make	
sure	that	“Android	SDK	Platform-Tools”	is	
checked.

 – Finally,	hit	“Apply”	then	“OK”.

 – ADB can now be found in <HOME_
DIRECTORY>/Android/Sdk/platform-
tools/adb . For Windows machines, this
will usually be C:\Users\<USER_NAME>\
AppData\Local\Android\Sdk\
platform-tools\adb .

2. Download the standalone Android platform-tools
for Windows, Mac, or Linux. This will allow you to
use ADB without installing the full Android Studio.
Once	extracted,	ADB	can	be	launched	directly	
from the platform-tools directory (no need to
install)	via	cmd/PowerShell/terminal.	

3. If	you’re	using	Debian-based	Linux	(like	Ubuntu),	
you can install ADB via apt:

sudo apt-get install adb

Enabling Developer Options +
Debugging on an Android Phone

To use ADB with an Android phone, you will also need
to enable debugging through Android’s developer
options, which are hidden by default. On the Android
phone you plan to do testing on:

1. Open the Settings app, scroll to the bottom, and
select	“About	phone”.

2. Scroll	to	the	bottom	and	tap	“Build	number”	7	
times.

3. Return to the previous screen and this time tap
“System.”

Figure 1

Figure 2

Figure 3

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio#downloads
https://dl.google.com/android/repository/platform-tools-latest-windows.zip
https://dl.google.com/android/repository/platform-tools-latest-darwin.zip
https://dl.google.com/android/repository/platform-tools-latest-linux.zip

WHITE PAPER

5Modifying Third-Party Android Apps for Fun and Profit

4. Tap	“Developer	options”	near	the	bottom.

5. Under	the	Debugging	heading,	make	sure	“USB	
debugging” is toggled on.

Further details can be found here.

Downloading	the	APK	to	be	Modified	

Once you’ve decided which app will serve as your
guinea	pig,	the	next	step	is	to	extract	its	APK	file	and	
save it to whatever machine you’ll be using to modify
it, which I’ll be referring to as the ‘dev machine’
from here on. There are many ways to do this, but
perhaps the easiest is using an online database like
APKCombo. Alternatively, if you already have the
target app installed on your Android device, the APK
Extractor	app	can	be	used	to	obtain	an	APK	file	from	
an installed app, which you can then move onto your
dev machine:

1. Connect the phone to your dev machine via USB
cable.

2. On your machine, run:

adb pull /sdcard/ExtractedApks/<NAME_
OF_APK> <DESTINATION>

In	my	case,	I	extracted	temi_com.robotemi.apk ,
the Android app used to control the temi robot.

Unpacking the APK

Next,	we	will	need	to	unpack	the	APK	in	order	to	
access	the	bytecode	and	various	resource	files	
(like AndroidManifest.xml). This can be done
using Apktool	–	installation	instructions	for	various	
platforms can be found here. Once again, make sure
you are using version 2.4.1 or above.

Once Apktool is installed, you can use it to unpack the
APK by running:

apktool d <APK_FILE>

This will create a directory bearing the same name
as	the	APK	file	(sans	the	extension)	and	containing	all	
the	unpacked	code	and	resources.	The	manifest	file	
can be found in the root of this directory, the various
resource	files	can	be	found	under	res/ , and the
code itself (in smali format) can be found in smali/ .
Some larger apps contain multiple classes.
dex	files,	in	which	case	the	smali	code	will	be	split	
between smali/ , smali_classes2/ , smali_
classes3/ , etc.

Dalvik, smali, and Other Made-Up
Words

Now	would	probably	be	a	good	time	to	explain	what	
exactly	smali	is,	how	it	relates	to	Dalvik,	and	why	you	
should care.

Dalvik was the name of the virtual machine used by
Android to run its apps, which meant that building an
APK involved converting Java (or Kotlin) source code
into Dalvik bytecode. Since Android 5.0, Dalvik has
been replaced by Android Runtime, or ART, but the
bytecode	format	has	remained,	stored	as	.dex	files	
within a packed APK (short for Dalvik EXecutable).

Figure 4

Figure 5

https://developer.android.com/studio/debug/dev-options.html
https://apkcombo.com/
https://play.google.com/store/apps/details?id=com.ext.ui&hl=en_US
https://play.google.com/store/apps/details?id=com.ext.ui&hl=en_US
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/install/
https://github.com/JesusFreke/smali

WHITE PAPER

6Modifying Third-Party Android Apps for Fun and Profit

smali, on the other hand, is an assembler for these
.dex	files	that	maps	the	bytecode	into	a	format	that	
is	“human	readable”	(a	hideous	overstatement),	the	
same	way	an	x86	binary	can	be	disassembled	into	x86	
assembly. In our case, Apktool has graciously done
the	difficult	task	of	converting	the	APK’s	various	
.dex	files	into	smali,	with	each	Java	class	getting	
its	own	.smali	file.	Since	Apktool	is	also	capable	of	
turning	smali	code	back	into	the	.dex	format,	we	can	
hypothetically	modify	the	code	within	these	files	and	
reconstruct the APK without needing to recompile
the app.

Making Changes to the Code

smali,	being	an	assembler,	is	difficult	to	read.	This	
isn’t	helped	by	its	obtuse	syntax	or	the	general	
lack of documentation for it. Here are some decent
resources to help get you started:

URL Description

https://source.android.com/devices/tech/
Dalvik/dex-format

Wiki page for the Dalvik .dex format.

http://pallergabor.uw.hu/androidblog/Dal-
vik_opcodes.html

List of every Dalvik instruction with corresponding descriptions.

https://github.com/JesusFreke/smali/wiki/
Registers

Description of how registers/method parameters work in smali.

https://github.com/JesusFreke/smali/wiki/
TypesMethodsAndFields

Description of the various types supported by smali and how methods/fields are specified.

http://androidcracking.blogspot.com/search/
label/smali

Blog on Android hacking with various posts addressing smali coding concepts.

https://themasterofmagik.wordpress.
com/2014/03/27/basic-smali/

A very thoroughly commented example smali program, taken from the previous blog.

https://bitbucket.org/JesusFreke/smali/
downloads/smalidea-0.05.zip

smali plugin for Android Studio. Install via Configure → Plugins → Cog Icon → Install Plugin From Disk...

By this, I mean that it’s better to do your reversing
on decompiled Java code and only look at the smali
code	once	you	know	exactly	what	change	you	want	
to make and what class to make it in. There’s lots of
Java decompilers that work on Android code; having
tried most of them, I would say JADX is probably the
best:

 � It’s written in Java so it’ll run on any platform

 � It features an intuitive GUI

 � It	can	open	.apk	files	directly

 – Will	convert	.dex	to	.jar	and	merge	multiple	.dex	
files	automatically

 � It handles modern Java features like nested
classes	and	lambda	expressions	better	than	most	
other decompilers

 � For any class being viewed, you can click on the
“smali”	tab	to	see	the	smali	code

 � Can display line numbers synchronized with the
corresponding	“.line”	directives	in	the	bytecode

 � Right click on any method, member, or class to see
its usage or declaration

 � The newest version also includes a built-in
debugging tool that works over ADB

The best approach to making
meaningful changes to a
complex	app	is	to	read	Java,	
write smali.

https://source.android.com/devices/tech/Dalvik/dex-format
https://source.android.com/devices/tech/Dalvik/dex-format
http://pallergabor.uw.hu/androidblog/Dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/Dalvik_opcodes.html
https://github.com/JesusFreke/smali/wiki/Registers
https://github.com/JesusFreke/smali/wiki/Registers
https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
http://androidcracking.blogspot.com/search/label/smali
http://androidcracking.blogspot.com/search/label/smali
https://themasterofmagik.wordpress.com/2014/03/27/basic-smali/
https://themasterofmagik.wordpress.com/2014/03/27/basic-smali/
https://bitbucket.org/JesusFreke/smali/downloads/smalidea-0.05.zip
https://bitbucket.org/JesusFreke/smali/downloads/smalidea-0.05.zip
https://github.com/skylot/jadx

WHITE PAPER

7Modifying Third-Party Android Apps for Fun and Profit

Figure 8

A close runner-up is Bytecode Viewer. Like JADX,
it is also written in Java, features a GUI, and can
open	.apk	files	directly.	Additionally,	it	allows	you	to	
select which decompiler to use (and features all the
prominent ones) and even lets you see the same class
decompiled using up to three different decompilers
side by side. Unlike JADX, however, it doesn’t display
smali	code	and	lacks	the	“see	usage/declaration”	
feature,	both	of	which	I	found	extremely	useful	when	
reversing the temi app.

Before you go digging through
thousands of Java classes, it’s
important to narrow your scope by
deciding ahead of time what it is
you’re	trying	to	accomplish	–	start	small.	In	the	
case	of	the	temi	app,	my	first	goal	was	to	modify	
the app so that it could be used to intercept video
calls intended for another user. While reversing, I
had	learned	that	the	temi	used	a	publish/subscribe	
protocol called MQTT to send various messages
between the robot, the phone app, and temi’s cloud-
based servers. In MQTT, users can publish messages
to topics, causing all users subscribed to that topic to
receive the message. In the case of temi, each user
(phone app or robot) has their own personal call invite
topic, and callers can publish a call invite message to
this topic in order to initiate a call. Thus, I was hoping
to	find	the	code	responsible	for	subscribing	a	user	to	
their own call invite topic and modify it to subscribe
to another user’s instead.

Once you have an idea of what functionality
you wish to modify, start your Java spelunking
by performing a search for a string you know
is	related	to	this	functionality.	For	example,	if	
you’re being told that you need to sign in to
Facebook before you can use the app and you
want to bypass that check, you can start by
doing a string search for the error message in
the directory spit out by Apktool. For the temi
app, I knew that the invite topic followed the
format	“client/X/invite”,	where	X	is	the	user’s	
unique ID:

The third result led me to MqttManagerImpl.
buildInviteTopic() , the method responsible for
building the invite topic string:

From	there,	I	used	JADX’s	“see	usage/
declaration” feature to enumerate the
locations where this method gets invoked.

Among these was MqttManagerImpl.
lambda$initMqttClient$13() ,	which	defines	
an anonymous MqttCallbackExtended class
that, among other things, subscribes a user to their
own call invite topic. It accomplishes this by making
a call to MqttManagerImpl.subscribe() ,
which takes two arguments: the topic string and a
number indicating the quality of service (QoS) level, as
shown	on	line	498	in	Figure	8.	In	this	case,	I	was	only	
interested	in	the	first	argument,	which	is	obtained	by	
calling buildInviteTopic() .

Jackpot. All I needed to do was replace the call to
buildInviteTopic() in the smali code with a
hardcoded string containing the victim’s user ID.

Figure 6

Figure 7

https://github.com/konloch/bytecode-viewer/releases
https://mqtt.org/

WHITE PAPER

8Modifying Third-Party Android Apps for Fun and Profit

Once you’ve read enough Java and arrive at your
own	“Jackpot”	moment,	it’s	time	to	switch	to	the	
“write	smali”	step	to	make	the	actual	modification.	
In my case, I opened MqttManagerImpl.smali
in VSCode and searched for this anonymous class.
Unfortunately, Dalvik bytecode doesn’t natively
support anonymous classes, so conventional smali
classes	are	defined	for	them	with	mangled	names.	
The one containing the code I was looking for was
named MqttManagerImpl$7.smali , the relevant
part of which is shown in Figure 9. Be on the lookout
for mangled names containing dollar signs like this if
your app also makes liberal use of anonymous classes,
nested	classes,	or	lambda	expressions.

The call to subscribe() I was trying to modify
can be seen on line 10 in Figure 9. It’s called using
Dalvik’s invoke-virtual instruction, which is

used to invoke any method that is not private, static,
final,	or	a	constructor.	Unfortunately,	the	call	to	
buildInviteTopic() I was trying to replace is
nowhere to be found. Having read some of smali’s
sparse documentation, I recalled that the parameters
passed to the method are loaded in order from the
list of virtual registers between curly braces, which in
the case of the subscribe() call above was {p2,
v1, v0} . The reason three virtual registers are used
despite the method only taking two arguments is that
the	first	register	in	the	list	always	contains	the	implicit	

this	reference.	This	meant	that	whatever’s	in	v1	just	
before subscribe() is called should contain the return
value of buildInviteTopic() .	Since	line	8	is	using	
move-result-object into v1 right after a call to
MqttManagerImpl.access$400() on line 6, it’s
safe to assume the return value of access$400() is
what’s	being	passed	as	the	first	parameter.	

As we can see in Figure 10, access$400() is simply
a wrapper for buildInviteTopic() .

This	is	a	quirk	with	inline/nested	classes	in	Dalvik:	
calling	the	“outer”	class’s	methods	from	the	“inner”	
class requires the construction of an intermediary

access method since the child class is treated as
an entirely separate class under the hood and their
hierarchical	scope	relationship	is	not	preserved	–	
another obstacle to look out for in your reversing
endeavors.

Armed	with	this	knowledge,	I	replaced	lines	6-8	in	
Figure	8	with	the	line	in	figure	10.

const-string , as the name would suggest, is the
instruction used to store a static string value in a
virtual register; in this case, v1.

When	you	are	content	with	your	“patch”,	save	your	
modifications	to	the	smali	file(s)	and	move	on	to	the	
next	step.

Figure 9

Figure 10

Figure 11

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

WHITE PAPER

9Modifying Third-Party Android Apps for Fun and Profit

Repacking the APK

Once you’ve made your desired changes to the app
code, you will need to repack the APK using Apktool:

apktool b <UNPACKED_APK_DIRECTORY>

Here,	<UNPACKED_APK_DIRECTORY>	refers	to	the	
directory	produced	when	you	first	unpacked	the	APK.	
The changes you made to the smali code should have
been done in this directory.

By	default,	Apktool	will	place	the	repacked	APK	file	in	
<UNPACKED_APK_DIRECTORY>/dist/ .	You	can	
also manually specify the output path:

apktool b <UNPACKED_APK_DIRECTORY> -o
<OUTPUT_PATH>

Signing the APK

Before	you	can	install	your	modified	APK	on	your	
phone,	you	must	first	sign	it,	since	Android	typically	
does not allow unsigned apps to be installed, even via
ADB.	In	order	to	sign	your	altered	app,	you	must	first	
generate a key. This can be done using keytool:

keytool -alias am -genkey -v -keystore
my-release-key.keystore -keyalg RSA \

-keysize 2048 -validity 10000

You	will	be	prompted	for	a	keystore	password.	Since	
you are likely not planning on having a wide release
of your hacked app, it doesn’t matter what you pick
as long as it’s at least 6 characters long and you
can	remember	it.	You	will	also	be	prompted	to	enter	
further information like name, location, etc. It doesn’t
really	matter	how	you	answer	these	–	you	can	leave	
them all blank if you wish.

This	will	create	a	new	key	with	the	alias	“am”,	RSA	
as	its	algorithm,	2048	as	its	size	(required	for	RSA),	
a validity duration of 10,000 days, and store it in the
keystore	file	“my-release-key.keystore” in
the	current	directory.	The	specifics	of	how	the	app	
is	signed	aren’t	particularly	important	–	just	that	you	
sign it.

Once you have your key, you can use it to sign your
app	using	jarsigner:

jarsigner -verbose -sigalg SHA1withRSA
-digestalg SHA1 -keystore \

my-release-key.keystore <LOCATION_OF_
REPACKED_APK> am

“am”	at	the	end	of	the	command	refers	to	the	alias	
you gave your key in the previous command. If you
used a different alias, change this string accordingly.
Additionally, make sure to provide the -keystore flag
with	the	exact	location	of	the	keystore	file	generated	
in the previous command. The way the command is
written here assumes its being run from the same
directory as the previous command. <LOCATION_
OF_REPACKED_APK> , as you may have guessed,
refers to the output of your prior apktool b command.

Once	all	the	files	are	successfully	signed,	you	should	
see output similar to the following:

>>> Signer

 X.509, CN=Mark Bereza, OU=Unknown,
O=Unknown, L=Unknown, ST=Unknown,
C=us

 [trusted certificate]

jar signed.

Warning:

The signer’s certificate is self-
signed.

The	warning	about	the	certificate	being	self-signed	is	
to	be	expected.

Installing the APK via ADB

Now	that	your	app	is	repacked	and	signed,	it’s	finally	
ready to be installed:

1. Connect the phone to your dev machine via USB
cable.

2. In a terminal, run:

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

adb install -d -r <LOCATION_OF_
REPACKED_APK>

The -d flag allows for the downgrading of apps and -r
allows the app to be installed even if an app with the
same name is already present on the device, which is
then overwritten.

3. If successful, you should see output similar to the
following:

Performing Push Install

temi_com.robotemi.apk: 1 file pushed.
4.2 MB/s (41591446 bytes in 9.458s)

 pkg: /data/local/tmp/temi_com.
robotemi.apk

Success

You	should	now	be	able	to	run	your	modified	app	and	
hack the planet. :)

